Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres

Base de données
Année
Type de document
Gamme d'année
1.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.10.26.355206

Résumé

The COVID-19 pandemic has exposed and exacerbated gender biases in science, technology, engineering, mathematics, and medicine. Accumulating evidence suggests that female scientists' productivity dropped during the initial lockdown period. With more time being spent on caregiving responsibilities, women may be struggling to collaborate on grant applications and launch new experiments. Scientists with disabilities or who belong to Indigenous nations or communities of color may have less time to devote to research due to health, family, or community needs. Collateral damage in this situation, the appropriate integration of sex, gender, and other identity characteristics in research content may also suffer. Sex and gender are better attended to when female scientists form part of the research team. Research funding agencies have a role to play in mitigating these effects by putting in place gender equity policies that support all applicants and ensure research quality. Accordingly, a national health research funder implemented gender policy changes that included extending deadlines and factoring sex and gender into COVID-19 grant requirements. Following these changes, the funder received more applications from female scientists, awarded a greater proportion of grants to female compared to male scientists, and received and funded more grant applications that considered sex and gender in the content of COVID-19 research. Whether or not these strategies will be sufficient in the long-term to prevent widening of the gender gap in science, technology, engineering, mathematics and medicine requires continued monitoring and oversight. Further work is urgently required to mitigate inequities associated with identity characteristics beyond gender.


Sujets)
COVID-19 , Troubles de la motricité
2.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.10.26.354969

Résumé

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a positive-sense single stranded RNA virus with high human transmissibility. This study generated Whole Genome data to determine the origin and pattern of transmission of SARS-CoV-2 from the first six cases tested in The Gambia. Total RNA from SARS-CoV-2 was extracted from inactivated nasopharyngeal-oropharyngeal swabs of six cases and converted to cDNA following the ARTIC COVID-19 sequencing protocol. Libraries were constructed with the NEBNext ultra II DNA library prep kit for Illumina and Oxford Nanopore Ligation sequencing kit and sequenced on Illumina MiSeq and Nanopore GridION, respectively. Sequencing reads were mapped to the Wuhan reference genome and compared to eleven other SARS-CoV-2 strains of Asian, European and American origins. A phylogenetic tree was constructed with the consensus genomes for local and non-African strains. Three of the Gambian strains had a European origin (UK and Spain), two strains were of Asian origin (Japan). In The Gambia, Nanopore and Illumina sequencers were successfully used to identify the sources of SARS-CoV-2 infection in COVID-19 cases.


Sujets)
COVID-19
3.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.04.30.070771

Résumé

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a positive-sense single stranded RNA virus with high human transmissibility. This study generated Whole Genome data to determine the origin and pattern of transmission of SARS-CoV-2 from the first six cases tested in The Gambia. Total RNA from SARS-CoV-2 was extracted from inactivated nasopharyngeal-oropharyngeal swabs of six cases and converted to cDNA following the ARTIC COVID-19 sequencing protocol. Libraries were constructed with the NEBNext ultra II DNA library prep kit for Illumina and Oxford Nanopore Ligation sequencing kit and sequenced on Illumina MiSeq and Nanopore GridION, respectively. Sequencing reads were mapped to the Wuhan reference genome and compared to eleven other SARS-CoV-2 strains of Asian, European and American origins. A phylogenetic tree was constructed with the consensus genomes for local and non-African strains. Three of the Gambian strains had a European origin (UK and Spain), two strains were of Asian origin (Japan). In The Gambia, Nanopore and Illumina sequencers were successfully used to identify the sources of SARS-CoV-2 infection in COVID-19 cases.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
SÉLECTION CITATIONS
Détails de la recherche